Time Left:

BASICS APPLICATIONS OF DIFFERENTIAL AND INTEGRAL CALCULUS IN BUSINESS AND ECONOMICS

Attempt now to get your rank among top students!

Marks: 30

Q.   1

Find an expression for y given ๐’…๐’š ÷ ๐’…๐’™= ๐Ÿ•๐’™๐Ÿ“

Q.   2

Find an expression for y given ๐’…๐’š ÷ ๐’…๐’™ = ๐’™_¾

Q.   3

dy = ∫ −๐Ÿ๐Ÿ๐ฑ−๐Ÿ’ dx solve it;

 

Q.   4

Given f ‘(x) = ∫ ( ๐Ÿ ÷ ๐’™ + ๐Ÿ‘ ÷ ๐’™๐Ÿ + ๐Ÿ ÷ ๐’™๐Ÿ“ ) dx

Q.   5

Integrate โˆซ ๐Ÿ‘ รท ๐’™ยฝ dx

Q.   6

Find y as a function of x if ๐’…๐Ÿ๐’š รท ๐’…๐’™๐Ÿ = 2x when x = 2, y = 7 

 

Q.   7

Integrate ∫ (๐’˜ + ๐Ÿ÷๐’˜ ) (๐’˜ − ๐Ÿ÷๐’˜ ) dx

Q.   8

Calculate ∫ ๐’™๐Ÿ• ๐’…๐’™

 

Q.   9

If ∫ ๐’‡(๐’™)๐’…๐’™ = ๐’™๐’†− ๐ฅ๐จ๐ |๐’™| + f(x), then f(x) is

 

Q.   10

If f (t) =โˆซ๐ญโˆ’๐ญ  ๐๐ฑ รท ๐Ÿ+๐ฑ๐Ÿ , then fโ€™ 

Q.   11

The existence of first order partial derivatives implies continuity 

Q.   12

The gradient of a function is parallel to the velocity vector of the level curve

Q.   13

y = (8 + ๐’™ยณ ) (๐’™ยณ - 8)

Q.   14

If (x, y, z, t) = xy + zt + x2y z t; x = k3; y = k2; z = k; t = โˆš๐’Œ

Find ๐’…๐’‡รท๐’…๐’• at k = 1

Q.   15

If (x, y) = x2 + y3; x = t2 + t3 ; y = t3 + t9 find ๐’…๐’‡รท๐’…๐’• at t=1.

Q.   16

Necessary condition of Eulerโ€™s theorem is

Q.   17

If f(x, y) = ๐’™+๐’šรท๐’š , x ๐’…๐’™รท๐’…๐’› + y ๐’…๐’›รท๐’…๐’š=? 

Q.   18

Find the approximate value of [๐ŸŽ. ๐Ÿ—๐Ÿ–๐Ÿ + ๐Ÿ. ๐ŸŽ๐Ÿ๐Ÿ + ๐Ÿ. ๐Ÿ—๐Ÿ’๐Ÿ]ยฝ

Q.   19

f (x,y) = ๐’™๐Ÿ‘+๐’š3 รท ๐’™๐Ÿ—๐Ÿ—+๐’š๐Ÿ—๐Ÿ–๐’™+๐’š๐Ÿ—๐Ÿ— find the value of fy at (x, y) = (0, 1)

Q.   20

f (x, y) = x3 + xy2 + 901 satisfies the Eulers theorem

Q.   21

  ๐’๐’Š๐’Ž
๐’ → ∞ [ ๐’÷๐Ÿ+๐’๐Ÿ + ๐’÷๐Ÿ’+๐’๐Ÿ + ๐’÷๐Ÿ—+๐’๐Ÿ + …. + ๐Ÿ÷๐Ÿ๐’ ] is equal to

Q.   22

Question 29 For homogenous function with no saddle points we must have the minimum value as

Q.   23

The derivates of f(x) = โˆซ๐’™ยณ๐’™ยฒ ๐Ÿรท๐’๐’๐’ˆ๐’• dt, (x>0) is  

Q.   24

โˆซ๐’ƒโˆ’๐’„๐ŸŽ ๐’‡ ๐’  (x + a) dx =

Q.   25

โˆซ๐’™๐ŸŽ ๐’™๐Ÿ‘๐’…๐’™ รท (๐’™๐Ÿ+๐Ÿ’)ยฒ =

Q.   26

The points of intersection of F1(x) =โˆซx2 (๐Ÿ๐ญ โˆ’ ๐Ÿ“)๐๐ญ ๐š๐ง๐ ๐Ÿ๐Ÿ(x) =โˆซx0๐Ÿ๐ญ ๐๐ญ, ๐š๐ซ๐ž

Q.   27

The rate of increase of bacteria in a certain culture is proportional to the number present. If it double 5 hours then in 25 hours its number would be

Q.   28

The degree of the 3๐’…๐Ÿ๐’š÷๐’…๐’™๐Ÿ = {๐Ÿ + ( ๐’…๐’š÷๐’…๐’™)๐Ÿ }๐Ÿ‘/๐Ÿ is differential equation 

Q.   29

The differential equation representing the family of curves y2 = 2c(x+โˆš๐’„), where c is a positive perimeter, is of

Q.   30

The order and degree of the differentiate equations (๐Ÿ + ๐Ÿ‘ ๐’…๐’šรท๐’…๐’™)๐Ÿ/๐Ÿ‘ โ€“ 4 ( ๐’…๐Ÿ‘๐’šรท๐’…๐’™๐Ÿ‘ ) are

Q.   31

The solution of the differential equation y - x ๐’…๐’šรท๐’…๐’™ = a(๐’š๐Ÿ + ๐’…๐’šรท๐’…๐’™) is 

Q.   32

Compute the sum of 4 digit numbers which can be formed with four-digit 1, 3, 5, 7 if each digit is used once in each engagement:

Chat on WhatsApp